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Abstract

A wide variety of model-based optimal test design methodologies have been developed in the past decade
using deterministic approaches. This means that the test planning is based on a single-nominal model and
an optimal design is obtained for precisely this model. Needless to say, the deterministic approach can lead
to an ineffective distribution of sensors and poorly defined excitation points due to the presence of
epistemic modelling errors. In this article, a robust-satisficing design approach to test planning is proposed
based on info-gap decision theory. This methodology provides a decision-making tool for better
understanding the trade-off between an optimal test design with no robustness to modelling uncertainties
and a sub-optimal design which satisfies a less demanding level of performance while remaining maximally
robust with respect to a given horizon of info-gap model uncertainty. The proposed strategy is illustrated
using an aerospace application under base excitation conditions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Designers are constantly faced with the need to compromise between often antagonistic
measures of design success such as: system performance, robustness to uncertainties in the system
and its environment, cost of development and manufacturing, cost of system failure, and
environmental impact. Expert knowledge combined with model-based decision-making tools can
provide a framework for entertaining a greater diversity of candidate solutions by improving the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Dj jth dof among candidate dof
F m � r mass modal participation factor

matrix
Im identity matrix of size m � m

L sensor location matrix
M0 rigid-body mass matrix
N number of samples
Sk vector of optimal sensors dof at itera-

tion k

Yi n � m modal matrix corresponding to
the ith sample

m number of modes

n number of dof
ns maximal number of sensors
r number of rigid-body modes
yi
n nth eigenvector of the ith modal basis

Ty
i
n nth eigenvector restricted to the transla-

tional dof only of the ith modal basis

ry
i
n nth eigenvector restricted to the sensor

dof of the ith modal basis
R n � r rigid body modes matrix
K diagonal spectral matrix
kYik1 vector of the sum of the columns in

absolute value
kyi

nk1 maximal component in absolute value
of the nth eigenvector of the ith modal
basis
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visibility of the variety of compromises at hand. However, the downside of a model-based analysis
lies in the knowledge that the model behavior is only an approximation to the real system
behavior. Hence the question of the honest designer: how sensitive is my measure of design success
to uncertainties in my system representation?
The notion of uncertainty here is taken in a very general sense to include: epistemic

uncertainties due to a lack of system knowledge, aleatory variability due to manufacturing
processes and environmental conditions, the range of operational system configurations, and even
uncertainties concerning the level of required performance. It is evident that if model-based
analysis is to be used with any level of confidence then methodologies must be developed that no
longer seek simply to optimize performance with respect to a given nominal model but rather
attempt to satisfy an acceptable sub-optimal level of performance while remaining maximally
robust to the system uncertainties.
In the context of the present article, we consider the specific design problem of planning

vibration tests for a complex mechanical assembly. In the past two decades, a wide variety of
deterministic model-based strategies have been developed to define an optimal configuration of
sensors and actuators. In most cases, an optimal design is one which provides the best
observability and distinguishability of the identified eigenmodes. For example, methodologies
based on the Guyan reduction [1,2], the QR decomposition of the modal matrix [3], maximization
of the determinant of the Fischer information matrix [4], entropy [5], minimum sensitivity to
measurement noise [6] or to parameter variations [7]. In particular, this last reference defines
optimality in terms of the confidence region resulting from the propagation of measurement errors
to the identified model parameters.
In contrast to these strategies, we propose an approach for test planning which foregoes strict

optimality and attempts merely to satisfy certain performance criteria while remaining maximally
robust with respect to epistemic uncertainties in the nominal model. The latter may result from
poorly estimated values for joint stiffnesses, geometric and material properties or even
unmodelled behaviors such as nonlinear stiffness and damping in the structure. The foundations
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of this robust-satisficing design approach has been developed in Refs. [8,9]. Moreover, we will
focus on designing a robust test in view of identifying the modal parameters of the system from a
set of measured frequency response functions resulting from base excitation tests. In this case, the
test design problem reduces to choosing the number and the locations of the sensor dof. The
performance of our test design will be evaluated using figures off merit based on the observability
and distinguishability of the identified eigenmodes. However, other performance criteria could
readily be included, such as maximizing the visibility of subdomains for error localization or
maximizing the distinguishability of subdomains for model updating.
The proposed methodology comprises three phases. Firstly, a set of eigenbasis realizations is

generated which is consistent with a predefined level of epistemic model uncertainty. Secondly, the
global modes within each realization are selected based on the notion of effective masses [10,11].
Thirdly, the robust sensor design is determined by searching for the configuration which
maximizes the worst-case distinguishability over the set of eigenbasis for a specified number of
sensors. This last step is repeated for each additional sensor. The whole process is then restarted
for the next level of epistemic model uncertainty.
The results of these calculations provide the basis for a test design decision-making tool

allowing the decider to examine the trade-offs between marginal gain in performance for an
additional sensor with respect to cost, as well as the degradation in performance for increasing
levels of epistemic uncertainty. This approach is illustrated on an industrial model taken from the
aerospace industry where the operational tests involve the application of base motion excitation.
The latter are typically used in qualification tests in order to evaluate the system’s dynamic
response to launch or flight conditions.
2. Robust test design

We develop in this section the proposed robust test design methodology. Following a brief
summary of info-gap decision theory, we will review the notion of effective mass which will allow
us to select the global structural modes within a given frequency range. We will then define the
figures of merit which will be used to measure the performance of a given test design and finally,
the overall robust-satisficing optimization algorithm will be presented.

2.1. Info-gap robustness analysis

The objective of the proposed test planning methodology is to improve our model-based
decision-making ability in the face of uncertainties. Among the more or less sophisticated
quantifications of uncertainty, we choose here to base our approach on the info-gap decision
theory [8,9] which is particularly relevant when the available knowledge about the uncertain
model properties is severely limited.
Let PðvÞ be the performance of a design (for example, eigenmode distinguishability) as a

function of the design variables v (for example, the number and location of sensors). Then the
notion of performance satisficing is expressed by

Pðv̂ÞXPc
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for a particular design v̂ and for some minimally acceptable performance Pc, where bigger is
better. This approach can be contrasted to a design strategy based on optimizing (in this case,
maximizing) the performance PðvÞ: In a robust-satisficing design strategy, we are prepared to
sacrifice performance in order to maximize robustness to uncertainties.
Info-gap models quantify uncertainties as the size of the gap between what is known

(nominal values of parameters eui) and what could be known (size of the domain of uncertainty).
The gap is characterized by a scalar parameter a which represents the degree of uncertainty
about the nominal values. In this example, we will use the following envelope bound info-gap
model:

Uða;eu Þ ¼ u :
ui � euieui

����
����pwia

� �
aX0 for i ¼ 1; . . . ; n, (1)

where w is a vector of weighting coefficients. The ensemble Uða;eu Þ thus represents a nested family
of realizable parameter sets which is consistent with a given horizon of uncertainty defined by a.
The robust-satisficing solution for a test design based on c sensors is the configuration v which

maximizes the info-gap robustness function âðv;PcÞ

v̂ðPcÞ ¼ arg max
v

âðv;PcÞ, (2)

where âðv;PcÞ is defined by

âðv;PcÞ ¼ max a : min
u2Uða;~uÞ

Pðv; uÞXPc

� �
. (3)

Remarks
	
 Eqs. (2) and (3) state that the robust-satisficing design is the one which maximizes the minimum
level of performance for a given horizon of uncertainty.
	
 The critical performance Pc is not necessarily known a priori but will be chosen based on the
results of the analysis where the trade-off between performance and the cost of allocating
testing resources can be examined explicitly.
	
 Completely different solutions may arise for different horizons of uncertainty.

2.2. Mode selection

We are interested in designing a base excitation vibration test in the lower-frequency range. In
the present context, the lower-frequency range refers to the frequency interval over which the
eigenmodes are fairly well decoupled from one another, as opposed to the medium frequency
range. The modal behavior of complex technological structures can still be quite complicated and
it often proves to be important to automatically filter out local behaviors which are considered to
be insignificant. Towards this end, we will use a global mode selection criterion based on the
effective modal mass [11]. The global modes are those which have predominantly large reaction
forces with respect to a rigid interface.
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First, let R be the rigid body matrix and Y the fixed-base eigenvectors such that

R TKR ¼ 0; R TMR ¼M0,

Y TKY ¼ K; Y TMY ¼ Im,

where M0 is the rigid body mass matrix. Let F be the mass modal participation factor matrix
defined by

F ¼ Y TMR.

The effective mass of mode i in the direction j due to an excitation k is then defined by

Meff
ijk ¼

FijFik

mii

.

This quantity can be interpreted as a measure of the modal reactions due to a unit-base
acceleration.
Remarks
	
 The sum of the effective masses over all modes is equal to the total mass M0Xn

i¼1

Meff
ijk ¼M0 �MI ,

where, generally, kMIk5kM0k corresponds to the mass at the grounded interface dof.
It is not generally possible to compute all n normal modes. A residual mass matrix can be
defined by

Mres
mjk ¼M0 �

Xm

i¼1

Meff
ijk .
	
 An eigenvector will be considered to be global if at least one of the values of the effective masses
along the 3 translational and the 3 rotational directions is greater than 1% to 10% of the rigid
body mass.

2.3. Observability

We will now consider two figures of merit that will provide a measure for the performance of a
given test design, namely the observability and the distinguishability of the identified eigenmodes.
First, let us consider the first figure of merit—observability. Qualitatively, an eigenmode is
considered to be observable if at least one sensor shows a significant level of response with respect
to the maximum response level for that mode.
Let Ty

i
n and ry

i
n be the nth eigenvectors of the ith basis restricted to the translational dof and the

retained sensors dof, respectively. The observability ki
n is measured a posteriori using a criterion

based on a ratio of the maximal component of each eigenvector at the sensors dof and the
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maximal component of each eigenvector at all candidate dof

ki
n ¼

kry
i
nk1

k
T
yi
nk1

. (4)
Remarks
	
 The observability criterion lies on the interval ½0; 1�.

	
 A small value of ki

n indicates that maximal component of the nth eigenvector among all sensors
dof is small compared with the maximal component of the nth eigenvector among all
translational dof, then mode n of the ith basis is not observable whereas a value of ki

n near
1 indicates that the mode is observable vis-a-vis the sensor locations.

2.4. Distinguishability

The second figure of merit is based on the distinguishability of the eigenmodes corresponding to
a given eigenbasis realization. Qualitatively, a set of eigenmodes is considered to be
distinguishable when no single eigenvector can be written as a linear combination of the
remaining eigenvectors in the basis. The distinguishability of an eigenbasis will be quantified here
by the condition number where distinguishability improves with decreasing condition number.
Let Yi be the modal matrix for the ith sample, Sk�1 the vector of optimal sensors dof defined at

iteration k � 1, Dj the jth element of a set of candidate dof and YiðS
k�1;DjÞ the modal matrix

Yi restricted to the set of dof defined by S
k�1 and Dj. At the kth iteration, the optimal location of

the kth sensor is defined by

Sk ¼ fSk�1;Djg : min
Dj

max
Yi

ðcondðYiðS
k�1;DjÞÞÞ

� �� �
. (5)

To start the procedure, the first sensor location is chosen by finding the candidate dof which
maximizes the sum of the columns of the modal matrix

S1 ¼ Dj : max
Dj

min
Yi

ðkYiðDjÞk1Þ

� �� �
. (6)

While other selection criteria for the first sensor are possible, Eq. (6) generally leads to reasonable
observabilities for a large number of modes when such a dof exists.

2.5. Solution algorithm

The solution of the optimization problem defined by Eq. (2) is by no means easy. Firstly, the
search for a strictly optimal location of ns sensors given n candidate values rapidly becomes
intractable. Secondly, searching for the worst-case performance over the bounded set defined by
Eq. (1) for a non-convex solution space is also impracticable. We are thus obliged to admit that it
is unrealistic to search for a strictly rigorous solution to the posed optimization problem. The
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following two compromises are thus invoked in order to obtain pertinent solutions in a reasonable
time:
	
 We will replace the strictly combinatorial problem of searching for the best c sensors, c ¼ 1 to
ns; given n candidate values by a sub-optimal solution whereby the sensors are added one by
one while retaining the sensor locations selected at the previous step.
	
 We will generate a set of N eigenbasis realizations which are consistent with Eq. (1). These
realizations will then represent the model space over which the locations of ns sensors will be
sought so as to maximize the worst-case performance.

The robust test planning algorithm is then implemented as follows:
1.
 Choose a value a defining a horizon of uncertainty.

2.
 Generate a set of N eigenbasis realizations using a latin hypercube sampling.

3.
 Filter out the local modal behaviors for each eigenbasis using the effective mass
criteria.
4.
 For i ¼ 1 to ns, determine the sensor test design that maximizes the minimum distinguishability
over the set of eigenbasis realizations. Do this in a sub-optimal manner by retaining at the step i
the i � 1 previously defined sensor positions.
5.
 Increment a and go to step 1, otherwise stop.

3. Industrial application

3.1. Finite element (FE) model description

The proposed robust test planning procedure is illustrated on the application PASTEC shown
in Fig. 1. PASTEC is a technological demonstration passenger developed by the CNES and
carried by the SPOT 4 satellite. It includes seven technology demonstration experiments to
improve our knowledge of the space environment and the phenomena affecting the behavior of
orbiting spacecraft. The PASTEC structure is composed of a primary truss of 12 rods with a
tubular section, a sandwich baseplate with aluminium skins and honeycomb core supporting 10
pieces of equipment and a secondary truss supporting the Multi-Layer Insulation and the
radiator.
The FE model contains 2537 nodes and 2830 elements. The sensor candidate dof set includes all

translational dof of beams elements and the dof along the x-axis for one-fourth of the nodes
belonging to shell elements. The three directions, along the three axis x; y and z, are considered in
the present example for base excitation.
The first eigenfrequencies of the nominal model and their associated maximal effective

masses are shown in Table 1. In the case of the nominal model and for a threshold of 1%
of the rigid body mass, only the modes 1, 9, 10, 11, 14, 15, 19, 20 and 21 are selected for the
test planning procedure. The mode shapes corresponding to mode 10, 11, 15 and 20 are shown in
Figs. 2–5. However, the set of global modes will generally be different for each eigenbasis
realization.
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Fig. 1. PASTEC structure and uncertain parameters.
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3.2. Results

The 16 uncertain parameters ui considered here are shown in Fig. 1. Points A to D

represent the bars of secondary truss while points E and F represents bars of the primary
structure. Bars A and F are used to model the interfaces between the horizontal, vertical, and
diagonal structural elements. The 16 uncertain parameters are the quadratic moments of
inertia of all the bars, the thickness of the radiator and the 3 thicknesses of the skins and the
baseplate core. Their nominal values are shown in Table 2. Note that the quadratic moments
of inertia are considered uncertain for all bars having the same role in the four faces of the
structure.
The observability and distinguishability criteria is evaluated for three values of a namely

ð0:1; 0:2; 0:3Þ which correspond to three levels of uncertainty for all parameters of �10%, �20%
and �30% (all weighting coefficients wi ¼ 1). For each value of a, a sample of N ¼ 75 eigenbasis
realizations are generated using a Latin hypercube algorithm [12]. A global mode selection is
performed based on effective masses with a threshold ratio between the effective mass values and
the structural mass equal to 1%.

3.2.1. Distinguishability
For each value of a, sensor locations are determined using Eq. (5). The results for the nominal

model and for the three values of a are shown in Fig. 6 which illustrates the trade-off between
allocated resources (number of sensors) and performance (level of distinguishability expressed by
the condition number) as well as the impact of increasing model uncertainty. For example, if we
consider that uncertainties of a ¼ 0:2 are consistent with our available knowledge of the FE
model, the best distinguishability is obtained for 25 sensors while if we consider an uncertainty
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Table 1

Eigenfrequencies and maximum of effective mass of the nominal model

No. Eigenfrequency (Hz) maxðMeff Þ

1 76.29 1.45

2 77.44 0.30

3 77.78 0.003

4 78.77 0.013

5 79.23 0.003

6 79.69 0.11

7 79.84 0.44

8 79.85 0.003

9 87.56 1.99

10 113.9 27.7

11 117.5 1.35

12 117.6 0.015

13 117.7 0.0002

14 117.9 3.80

15 124.4 18.23

16 131.9 0.07

17 132.4 0.27

18 134.8 0.39

19 136.6 11.7

20 147.7 37.2

21 149.7 9.6

Fig. 2. PASTEC mode 10.
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Fig. 3. PASTEC mode 11.

Fig. 4. PASTEC mode 15.
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level a ¼ 0:1; only 13 sensors are needed to obtain the same level of distinguishability. This kind
of information allows us to evaluate the sensitivity to uncertainty as well as the marginal gain
resulting from the addition of new sensor.
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Fig. 5. PASTEC mode 20.

Table 2

Uncertain parameters

Parameter Nominal value

First quadratic moment of inertia of bars A 1:143� 10�9 m4

Second quadratic moment of inertia of bars A 1:46� 10�10 m4

First quadratic moment of inertia of bars B 1:959� 10�9 m4

Second quadratic moment of inertia of bars B 1:959� 10�9 m4

First quadratic moment of inertia of bars C 1:143� 10�9 m4

Second quadratic moment of inertia of bars C 1:46� 10�10 m4

First quadratic moment of inertia of bars D 1:754� 10�9 m4

Second quadratic moment of inertia of bars D 1:3� 10�10 m4

First quadratic moment of inertia of bars E 2:13� 10�8 m4

Second quadratic moment of inertia of bars E 2:13� 10�8 m4

First quadratic moment of inertia of bars F 1:143� 10�9 m4

Second quadratic moment of inertia of bars F 1:46� 10�10 m4

Radiator thickness 0:0006m
Baseplate skins thicknesses 0:0008m
Baseplate core thickness 0:0434m

P. Vinot et al. / Journal of Sound and Vibration 288 (2005) 571–585 581
For benchmark purposes, the maximum condition number (worst-case distinguishability) for
all eigenbasis realizations restricted to their translation dof is calculated to be 8:26 and is shown as
a dashed line in Fig. 6. The diminution of the condition number begins when the number of
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Fig. 6. Evolution of the robust condition number: � nominal; � a ¼ 0:1; & a ¼ 0:2; � a ¼ 0:3; – – max (condðY iÞ).

P. Vinot et al. / Journal of Sound and Vibration 288 (2005) 571–585582
sensors is greater than the maximal number of selected modes among the basis Y i for each value
of a.
The robust sensor design is shown in Fig. 7 for the uncertainty level a ¼ 0:2 and a number of

sensors equal to 25. Note that 3 sensors are not visible due to the orientation of the 3D
visualization.
The evolution of the robust condition number as a function of the number of sensors and their

corresponding observation direction is reported in Table 4.
We present in Table 3 the results obtained by applying the optimal sensor design based on the

deterministic nominal model to the eigenbasis realizations Y i (i ¼ 1275), for each level of
uncertainty a. The best and the worst distinguishabilities, corresponding to the lowest and highest
condition numbers, can be compared to the robust distinguishability obtained from Eq. (5) where
the results have been computed for 25 sensor dof. We note the following tendencies:
	
 The optimal deterministic design can lead to both very good and very poor distinguishabilities
over the space of model uncertainties, as seen in the first two rows in Table 3.
	
 The robust design sacrifices optimal values of distinguishability while insuring worst-case
values which are much better than those of the deterministic design, as seen in the third row in
Table 3.

3.2.2. Observability

The observability is computed a posteriori using Eq. (4) for the nominal model. Fig. 8 illustrates
the typical evolution of the observability for a few modes and we note that the first sensor allows
us to observe mode number 20. This behavior is typical for about all modes, and in particular
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Fig. 7. Robust sensor location for a ¼ 0:2.

Table 3

Distinguishability for deterministic and robust designs

Nominal a ¼ 0:1 a ¼ 0:2 a ¼ 0:3

Best condition number 13.55 7.23 6.33 6.02

Worst condition number 13.55 45.44 86.36 238.9

Robust condition number 13.55 17.53 21.65 24.36

P. Vinot et al. / Journal of Sound and Vibration 288 (2005) 571–585 583
mode 15, which have large effective masses along the direction of the first sensor (y) shown in Fig.
7. The modes 10 and 11 have large effective masses along the x-direction. The first sensor along
the x-direction is added to the test design in second place. We note that the observability is not as
large as expected. This is due to the fact that the first sensor in the x-direction is near a nodal line
of the modes 10 and 11. By adding 3 more sensors along the x-direction, modes 10 and 11 become
observable once the total number of sensors exceeds 10 as shown in Table 4.
4. Conclusion

A method for the robust design of base excitation vibration tests is proposed based on a info-
gap robust-satisficing design approach. The performance of the test design is measured primarily
by the distinguishability of the observable eigenbasis. Optimal performance based on a
deterministic nominal model is sacrificed in order to obtain a solution which satisfies a minimum
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Fig. 8. Observability wrt number of sensors: — mode 10; – – mode 11; – � – mode 15; - - - mode 20.

Table 4

Evolution of condition number for a ¼ 0:2

Sensor number 1 2 3 4 5 6 7 8 9 10

Condition number 1 1 1.02 1.31 1.96 2.07 6.32 6.73 11.2 14.2

Direction 2 1 1 2 2 3 3 2 1 1

Sensor number 11 12 13 14 15 16 17 18 19 20

Condition number 34.8 25.5 21.2 18.7 17 15.7 14.6 13.8 13.5 13.2

Direction 3 3 3 3 3 3 1 3 1 3

Sensor number 21 22 23 24 25

Condition number 13.2 12.9 12.6 12.6 12.5

Direction 3 1 3 2 3

P. Vinot et al. / Journal of Sound and Vibration 288 (2005) 571–585584
level of distinguishability while maximizing robustness to uncertainties in the model. The latter are
due not only to tolerances in material properties and manufacturing processes, but also to the use
of uncertain modelling rules (simplified connectivities, homogenized properties, poorly estimated
stiffness and damping laws, etc.). Since the test planning is prepared based on a non-validated
model, we have assumed that very limited information is available concerning the details of the
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uncertainties affecting the model variables and this has lead us to adopt an uncertainty model
which is consistent with our available knowledge, namely an info-gap uncertainty approach.
The proposed methodology is applied to a small industrial example taken from the aerospace

field in order to illustrate the significant impact that model variability can have on the chosen
optimality criteria and to highlight the importance of taking this variability into account in the
test planning process. Future work will focus on introducing other types of optimality criteria into
the design objectives, for example, parameter visibility and distinguishability for model error
localization purposes, and mode excitability for input design. Moreover, the impact of aleatory
errors in the eigenvector measurements might also be introduced in order to complete the
representation of uncertainty in the test planning process.
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